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The intensity of coherent X-radiation (CXR) from a relativistic electron beam

interacting with the crystal [Feranchuk, Ulyanenkov, Harada & Spence (2000).

Phys. Rev. E, 62, 4225±4234] is studied in view of its application to the phase

determination problem. The analysis of CXR spectra is shown to permit an

independent measurement of unit-cell structure factors, de®ned by both the

electron-density distribution and the nucleus positions. In relation to these

structure factors, two new types of Patterson function are introduced that can

simplify the solution of crystal structure.

1. Introduction

The phase problem is a fundamental problem of crystal-

lography because its solution would help to reconstruct

unambiguously the spatial distribution of electron density

within the crystal from the intensity distributions of the

diffracted waves (Vainshtein, 1981). The development of so-

called `direct methods' for the solution of the phase problem is

the cutting edge of both fundamental and applied science

(Sanyal et al., 1993; Tegze & Faigel, 1996; HuÈ mmer & Weckert,

1996; Shen, 1999; Iwasaki et al., 1999; Shen et al., 2000a,b).

Brilliant examples of such studies are successful experiments

on direct determination of the phases of structure amplitudes

by HuÈ mmer & Weckert (1995), Shen (1999) and the recon-

struction of X-ray holograms by Bompadre et al. (1999).

General trends of development in phase-sensitive diffrac-

tion methods are related to the possibility of the interference

of X-ray beams, which take their origin from different chan-

nels of X-ray interaction with atoms in a crystal. In the present

report, we discuss a substantially different approach, where

the phase information is formed by the amplitude interference

of different mechanisms of X-ray production by nonrelativistic

electrons interacting with the crystal. The interference of

amplitudes of different electromagnetic processes initiated by

an interaction of charged particles with a media has been

discussed (Baryshevskii & Feranchuk, 1983). Two particular

mechanisms of X-ray generation within the crystal, parametric

X-radiation (PXR) and coherent Bremsstrahlung (CBS), have

recently been pointed out by Kleiner et al. (1994) as candi-

dates for the effective amplitude interference. Experimentally,

this effect has been con®rmed by Blazhevich et al. (1994) and

Morokhovskyi et al. (2000) for relativistic electrons of energy

5 MeV. Our recent results (Feranchuk & Ulyanenkov, 1999;

Feranchuk et al., 2000) demonstrate that the PXR/CBS

interference effect is even more prominent for nonrelativistic

particles with energies of hundreds of keV when the ampli-

tudes of both processes have the same order of magnitude

and interference phenomena result in coherent X-radiation

(CXR). Taking this into account allowed us to perform a

rigorous theoretical description of experiments by Koro-

bochko et al. (1965) and Reese et al. (1984), which have not

been interpreted correctly for a long time. The results by

Feranchuk et al. (2000) demonstrate that the phenomenon of

PXR/CBS interference opens up new possibilities for the

solution of the phase problem in crystallography.

In this paper, we present a detailed analysis of the condi-

tions for the measurement of structure-factor phases using the

mentioned interference effect and discuss a possible technique

for the realisation of this effect in X-ray structure analysis. The

possibility of the phase sensivity of the radiation intensity is

based on the differences in the nature of PXR and CBS.

Whereas the former arises from the scattering of moving

electrons on atomic electrons, the latter is the result of the

scattering from both the nuclei and the electrons of the atoms.

This difference makes it possible to distinguish the contribu-

tions of both modes to the CXR intensity. As a result, two

types of structure factor can be determined; the ®rst corre-

sponds to the electron-density distribution and the second

describes the location of nuclei inside the crystal elementary

cell. On the basis of these structure factors, three types of

Patterson function (Buerger, 1959) are introduced and their

usage is shown by numerical examples to increase the reso-
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lution of Patterson projections and the precision of the

reconstructions of the crystalline structure. We also derive the

conditions for structure amplitudes, at which their relative

phases can be measured and thus the information obtained by

other phase-sensitive methods may be complemented.

2. Coherent X-radiation from nonrelativistic electrons
in a crystal

We use the following expression from Baryshevskii (1982) for

the spectral density of the number of photons emitted in

direction n, which takes into account the interaction of both

the electron and the electromagnetic ®eld of the emitted

photons with the crystal:

d2N�s�n! � �e2!=4�2c2� RtL
0

dt v�t� � Eks�r�t�; !� exp�ÿi!t�
���� ����2 d! dn:

�1�
Here, ! and k � !=cn are the frequency and wavevector of

radiation in the direction n, respectively; r�t� and v�t� are the

coordinates and the velocity of the electron within the crystal;

Eks�r�t�; !� is the wave®eld of the emitted electromagnetic

wave with de®ned polarization, which should be found by

taking into consideration the interaction of the wave®eld with

the crystal; index s � 1; 2 de®nes one of the polarizations of

the emitted photon; d! and dn are the spectral and angular

intervals where the photons are detected, and tL represents

the time necessary for the electron to cross a crystal of

thickness L. Furthermore, we suppose that crystalline ®lms of

thicknesses less than the extinction length for emitted photons

are used in the experiment, enabling one to ®nd the functions

r�t� and Eks�r; !� by perturbation theory. It is therefore

possible to consider the contribution by different X-ray

generation modes to the radiation amplitude additively, as

well as to neglect multiple scattering of electrons in the crystal

when considering the formation of the coherent radiation

peaks.

The electromagnetic ®eld of the emitted radiation under

speci®c diffraction conditions can be written as (Feranchuk &

Ulyanenkov, 1999; Nitta, 1991)

Eks�r; !� � es exp�ik � r� �P
g 6�0

Egs exp�i�k� g� � r�;

Egs � ÿ��g=�k2
g ÿ !2=c2���kg � �g � es� ÿ !2=c2es�;

kg � k� g; �2�

where es is the polarization vector and �g are the Fourier

components of the polarizability. The latter describes the

coherent interaction of the emitted radiation with the periodic

charge density of the crystal, and this interaction de®nes the

main properties of parametric X-radiation. The summation in

(2) is performed over all reciprocal-lattice vectors (RLV) g
and the volume of the sample equals unity. With the

assumption that the radiation frequency is far from the char-

acteristic frequencies of the crystal atoms, the Fourier

components of the polarizability can be represented as

�g � ÿ
4�e2

m!2

S�g�


; S�g� �P

i

Fi�g� exp�ÿWi�g�� exp�ig � Ri�;
�3�

where e and m are the charge and the mass of the electron;

S�g� is the structure factor of the crystal elementary cell of

volume 
, evaluated as a sum of form factors Fi�g� of separate

ith atoms at positions Ri; exp�ÿWi�g�� is the Debye±Waller

factor taking into account the thermal vibrations of the atoms.

The interaction of electrons and electromagnetic radiation

with a crystal leads both to changing the stationary states of

the electromagnetic ®eld and to varying the motion law r�t�
of the electron. Meantime, the generation of CBS is caused by

the scattering of electrons by a coherent periodic potential

(Ter-Mikaelian, 1972)

U�r� � �1=
�P
g 6�0

Ug exp�ig � r�;

Ug � 4�e
P

i

exp�ig � Ri�f�Zi ÿ Fi�g��=g2g exp�ÿWi�g��;
�4�

which is de®ned by the Coulomb interaction of the beam

particles both with the electron density of the crystal and with

the nuclei. Here Zi is the charge of the atomic nucleus in the

ith position of the crystal unit cell and the other notations have

the same meaning as in (3). The law of motion r�t� of an

electron in a potential (4) is given by the solution to Newton

equations with an accuracy justi®ed up to O�Ug�:
r�t� � r0 � v0t � r1�t�;

r1�t� � i�e=m�P
g

�g=�g � v0�2�Ug exp�ig � v0t�; �5�

where the velocity of the electron beam in vacuum is v0. Then

the expression for the radiation intensity in a thin crystal is

derived from (1) using (5):

@2N�s�n;!

@!@n
� e2

4�2c2
!
X
g 6�0

jAgs�!; n�j2; �6�

with the amplitudes Ags being de®ned by

Ags � v0 � Egs ÿ
e

m

Ug

g � v0

�
es � g� �es � v0�

k � g
g � v0

�� �
Q;

Q � �sin qLz=v0�=q; q � �!ÿ v0 � �k� g��=2: �7�
Whereas the ®rst term in (7) describes PXR, the second term

determines the coherent Bremsstrahlung. The position of the

intensity peaks in (7) is de®ned for both PXR and CBS by the

same kinematic factor jQj2, which appears due to coherent

interference of radiation formed by different crystallographic

planes. A similar factor was introduced for the kinematical

approach to PXR from relativistic electrons by Feranchuk &

Ivashin (1985) and the contribution of this factor to radiation

intensity is

jQj2 � 2��La=v0��1ÿ eÿLz=La ���!ÿ v0 � �k� g��: �8�
Here La is the absorption length of the crystal for the

frequency determined from the zeros of the �-function argu-

ment in (8). Thus, the distributions of radiation, both spectral

and angular, are de®ned by the sum of resonant terms and,



what is most important, these terms impose equivalent

conditions on the frequency and the direction of the emitted

photons for both PXR and CBS. For every selected crystal-

lographic re¯ection with interplane distance d, a set of narrow

spectral lines with frequencies !n��� is formed and can be

observed in the direction with angle � to the vector v0

(Feranchuk & Ulyanenkov, 1999):

!n��� �
2�v0 cos �B

d�1ÿ v0=c cos �� n; n � 1; 2; . . . : �9�

The relative width of these lines is proportional to the electron

velocity

�!0=! � v0=Lz!n���; �10�
where �B is the angle between the velocity v0 and the normal

to the crystallographic planes involved in the scattering

process. For nonrelativistic electrons, the number of emitted

photons depends weakly on the variation of angle �. The

spectral intensity of photons emitted from one electron in the

chosen direction is de®ned by the sum of the interfering

amplitudes of PXR and CBS:

@2Ns

@n@!
� e2

2�c2
!n

Lz

v0

jAPXR � ACBSj2��!ÿ v0 � �k� g��;

Lz � La; �11�
with amplitudes

APXR � ��g=�k2
g ÿ !2=c2����v0 � kg��g � es� ÿ !2=c2�v0 � es��;

�12�
ACBS � ÿ�eUg=m
�g � v0���g � es � �v0 � es��k � g=v0g��:

�13�
The general formulae (11)±(13) demonstrate the explicit

dependence of CXR intensity on structure amplitudes, which

lays the foundation for the proposed method of phase deter-

mination. The method is only usable when the photon detector

is able to distinguish the CXR peaks on the incoherent

Bremsstrahlung background. The results of successful experi-

ments on observation of X-radiation from nonrelativistic

electrons in a crystal carried out by Korobochko et al. (1965)

and Reese et al. (1984) prove the possibility of such a

separation. Physical parameters of the detector for resolving

CXR peaks have been recently discussed by Feranchuk et al.

(2000).

3. Evaluation of structure amplitudes from CXR spectra

In opposition to the relativistic case, the condition for the

position of CXR peaks from nonrelativistic electrons does not

®x simultaneously the resonant frequency and the angle of

photon emission. This condition, being de®ned by the argu-

ment of the � function in (11), just establishes the relation

between the frequency and the emission angle. Therefore, the

CXR peaks can be observed either as angle distribution at

®xed radiation frequency or as spectral distribution of photons

with ®xed detector position. Further, we consider the second

experimental scheme (see Fig. 1), which can be realised by

positioning the investigated sample immediately on the

anode of the X-ray tube (Feranchuk & Ulyanenkov, 1999).

Performing the integration over angular detector aperture

[see details in Feranchuk et al. (2000)] and summing over the

polarizations of the emitted photons in (11) by using formulaP
s

e���s e���s � ��;� ÿ k�k�=k2;

we ®nd that the number of quanta normalized by one electron

and registered by the detector is

�N�!� � e2

2�
!

Lz

v
jRj2 ÿ �k � R��k � R

��
k2

� �
��!ÿ !g�: �14�

We drop here and in the following equations the index 0 for

the electron velocity in vacuum. The function ��!ÿ !g�
describing the instrumental shape of the CXR peak is deter-

mined by detector parameters, angular resolution �� and

spectral resolution �!, and does not depend on crystal

structure (Feranchuk et al., 2000):

��!ÿ !g� � ��2 expfÿ�!ÿ !g�2=�!2

ÿ �!gv���2=�4�!2c2�1ÿ v=c cos �0�2�g: �15�
The most essential feature of function � for further discussion

is its maxima near the characteristic CXR frequencies, the

values of which depend on the primary electron velocity v,

the observation angle �0 and the reciprocal-lattice vectors g

forming the angle �B with the electron velocity

!g � vg cos �B=�1ÿ v=c cos �0�: �16�
The radiation intensity dependence on structure amplitudes is

de®ned by the vector

R � fk�g=��k� g�2 ÿ !2=c2�g�gÿ !=cv�
ÿ �eUg=m
�g � v���g� v! cos ��0 � �B�=vc cos �B�: �17�

We restrict ourselves to the case when the CXR frequency is

far from the anomalous-dispersion region of crystal atoms.

Then, according to the de®nitions for polarizability of crystal

(3) and Fourier components of atomic potential (4), two types

of structure amplitude can be distinguished in formula (17).

Both amplitudes are related to the distribution of charge

density inside the crystal unit cell; however, one of them
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Figure 1
Geometrical sketch of vectors and angles describing the radiation from
nonrelativistic electrons in a crystal.
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depends on the atomic form factors determined by the elec-

tron-density distribution

S�g� �P
i

Fi�g� exp�ÿWi�g�� exp�ig � Ri�; �18�

whereas the second contains the nucleus charges only:

S0�g� �
P

i

Zi exp�ÿWi�g�� exp�ig � Ri�; �19�

thus the spatial distribution of charge density in the latter case

is considerably localized and de®ned by solely nuclear oscil-

lations, which result in the Debye±Waller factor. It should be

noted that the structure factor, depending on nucleus positions

in the unit cell but not on electron density, appears also in the

description of neutron diffraction. However, in this case, it

contains poorly de®ned nuclear scattering lengths (Cowley,

1975) instead of nucleus charges.

Since the radiation intensity (14) contains the considered

structure factors along with other physical parameters deter-

mining the kinematics of processes, viz frequency, velocity and

angles, several experimental set-ups can be used for evaluation

of the values of S and S0. A simple experimental scheme for

evaluation of structure factors for reciprocal-lattice vector g

could be realised with the measurement of intensity in a CXR

peak at several values of some kinematical parameter, e.g.

velocity (energy) of electrons. Under these conditions, the

frequency of radiation is assumed to be constant and equal to

!g from (16); the function ��!ÿ !g� is also replaced by a

constant �0 � ��0�, corresponding to the maximum of this

function. With these approximations and after some algebra,

(14) transforms to the following expression:

�Ng �
e2

2�

Lzgc2

v2 cos �B�1ÿ v=c cos �0�
4�e2

m
g2c2

� �2

�0

�
(
jSj2 �1ÿ v=c cos �0�4
�1� v=c cos ��0 � 2�B��2

�
"

sin ��0 � �B� ÿ
v2 cos �B sin �0

c2�1ÿ v=c cos �0�

#2

� �jSj2 � jS0j2 ÿ 2jSjjS0j cos '�

� sin ��0 � �B� ÿ
v cos ��B � �0� sin �0

c�1ÿ v=c cos �0�
� �2

ÿ 2�jSj2 ÿ jSjjS0j cos '�
�

sin2 ��0 � �B�

� v sin ��B � �0� sin �0�cos ��B � �0� ÿ v cos �B�
c�1ÿ v=c cos �0�

ÿ v3 cos ��B � �0� cos �B sin2 �0

c3�1ÿ v=c cos �0�2
�)
: �20�

The most essential feature in formula (20) is that due to the

interference of PXR and CBS; the peak intensity depends not

only on the moduli of the structure factors jSj and jS0j but also

on their relative phase '. The uncommon dependence of the

intensity on the electron velocity v2 should be pointed out as

well. The explanation for this behavior is the following: the

frequency of the CXR peak for the RLV g decreases with

decreasing electron velocity, which in turn leads to a fast

increase of the crystal polarizability and consequently to a

quadratic velocity dependence of the intensity.

The intensity variation for different values of structure

factors and their relative phases is an important criterion for

the effectiveness of the phase-determination methods. The

technique proposed in the present work can give substantial

separation of observed intensities and dependence on the

phase and structure-factor values. Fig. 2 shows the dependence

of v2=c2�N for �0 � �B � �=4 on the electron velocity for

different ratios of structure-factor modulus  � jSj=jS0j, and

the relative phase ' � 0 (three lower curves). The calculation

of jS0j is straightforward from these data because as the

velocity decreases all the curves tend to this value:

v2=c2�Ng �
e2

2�

Lzg

cos �B

4�e2

m
g2c2

� �2

�0jS0j2 sin2 ��0 � �B�:
�21�

However, when the electron velocity v increases, the behavior

of curves becomes considerably different for different values

of ratio . The dashed curves in Fig. 2, showing the intensity

dependence on electron velocity for equivalent ratios  but

different phases ', illustrate phase sensitivity of the X-ray

intensity in the framework of the proposed method. In this

case, the intensity variation is even larger than for the former

case of constant phase. For the particular case of a centro-

symmetric crystal, the relative phase can take two values only,

' � 0 or ' � � (Buerger, 1959). These two cases are obviously

separated in their intensities in Fig. 2. For clarity, the intensity

for relative phase ' � �=2 is also depicted, which can be

observed for an elementary cell without inversion center.

4. Evaluation of electron density

In this section, we present some examples of supplementary

information on crystal structure delivered by the PXR/CBS

interference effect. As was shown above, the method permits

the estimation of not only the structure-factor modulus jS�g�j,
which is accessible by conventional X-ray analysis, but also

Figure 2
The dependence of value v2=c2�N on the electron velocity v for different
values of structure-factor ratio  and phase '.



two additional characteristics of unit cell in the reciprocal

space, determined by the parameter jS0�g�j and the phase '�g�.
To clarify the physical meaning of these parameters in direct

space, let us assume that they have been evaluated for a large

number of RLVs and de®ne the analog of the Patterson

function for them (Buerger, 1959):

P�r� �P
g

jS�g�j2 exp�ig � r�

P0�r� �
P

g

jS0�g�j2 exp�ig � r�

P1�r� �
P

g

jS�g�jjS0�g�j cos '�g� exp�ig � r�:
�22�

Using the assumption1 that at low temperature the average

amplitude of nucleus oscillations is essentially less than the

dimension of atoms within a unit cell, the functions (22) are

expressed through the convolutions of charge density in real

space:

P�r� � R du
P

i

P
j

�i�uÿ Ri��j�rÿ Rj � u�

P0�r� �
R

du
P

i

P
j

ZiT0�uÿ Ri�ZjT0�rÿ Rj � u�

P1�r� � 1
2

P
i

P
j

Zi��j�Ri ÿ Rj � r� � �j�Ri ÿ Rj ÿ r��:
�23�

Here, �i�rÿ Ri� is the electron-density distribution in the ith

atom with coordinate Ri and the integration is performed over

the entire unit cell. The function T0�rÿ Ri� describes the

`smearing' of the nuclei in real space caused by their thermal

oscillations. In the framework of the approximations used, it

weakly depends on the charge of the nucleus and is consid-

erably more localized than the function ��r�. It is of special

importance that the Patterson function P1 depends linearly on

the distribution of electron density, contrary to the classical

Patterson function P, which depends on the square of this

value. Meanwhile, the peaks of function P0 are considerably

more strongly localized than those of function P, which

simpli®es the identi®cation of nuclei positions. For illustration

of the difference between functions P0;1 introduced in the

present work and the classical Patterson function P, a

numerical example of a one-dimensional crystal with period d

and two atoms of charge Z1;2 in the unit cell is given below. To

derive the ®nal formulae analytically, the electron-density

distribution in every atom is assumed to be Gaussian with

FWHM a1;2, de®ned by the Thomas±Fermi radius:

a1;2 � ��Z1;2�ÿ1=3;

where � is constant. The distribution of nuclear density is also

described by a Gaussian with FWHM �� a1;2. Using these

approximations, the real-space distributions for electron

charge density ��x� and for nuclear charge density �n�x�
(taking thermal oscillations into account) both de®ned inside

the crystal unit cell are written as

��x� � �1=��1=2�f�Z1�4=3 exp�ÿ�xÿ d=4�2=a2
1�

� �Z2�4=3 exp�ÿ�x� d=4�2=a2
2�g

�n�x� � �1=��1=2�fZ1 exp �ÿ�xÿ d=4�2=�2�
� Z2 exp �ÿ�x� d=4�2=�2�g:

�24�

Both functions, simulated for the above-mentioned example

crystal, are depicted in Fig. 3.

Finally, the classical Patterson function P and the intro-

duced analogous functions P0 and P1 for the discussed unit cell

are presented:

P�x� � �1=��2��1=2�f�Z1�7=3 exp�ÿx2=2a2
1�

� �Z2�7=3 exp �ÿx2=2a2
2�g � fZ1Z2=���a2

1 � a2
2��1=2g

� fexp �ÿ�xÿ d=2�2=�a2
1 � a2

2��
� exp �ÿ�x� d=2�2=�a2

1 � a2
2��g �25�

P0�x� � �1=��2��1=2�
�
�Z2

1 � Z2
2� exp �ÿx2=2�2�

� Z1Z2fexp �ÿ�xÿ d=2�2=2�2�
� exp �ÿ�x� d=2�2=2�2�g

�
�26�

P1�x� � �1=��1=2�f�Z1�7=3 exp �ÿx2=a2
1�

� �Z2�7=3 exp �ÿx2=a2
2�g � �Z1Z2=2a1�

1=2�
� fexp �ÿ�xÿ d=2�2=a2

1� � exp �ÿ�x� d=2�2=a2
1�g

� �Z1Z2=2a2�
1=2�fexp �ÿ�xÿ d=2�2=a2

2�
� exp �ÿ�x� d=2�2=a2

2�g: �27�
Fig. 4 demonstrates the differences between the classical

function P and functions P0 and P1. These can help in the

interpretation of Patterson-function peaks for the solution of

crystal structure and electron-density distribution.

The applicability of the proposed approach depends on the

volume of reciprocal-lattice space where the relative phases of

structure amplitudes S0�g� and S�g� are not equal to zero. As

an example, the analytical formulas are derived below for a

crystal with a centrosymmetric unit cell, containing two groups

of atoms. Let Zi represent the charges of atomic group i
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Figure 3
Calculated real-space distributions of electron charge density � and
nucleus charge density �n taking into account thermal oscillations. The
curves are presented within the region of the unit cell with period d � 5.

1 This assumption is also used for the construction of the classical Patterson
function (Buerger, 1959).
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(i � 1; 2) and, for distinctness, suppose Z1 >Z2. If the Debye±

Waller factor is neglected, the structure amplitudes can be

represented as

S�g� � AF1�g� � BF2�g�; S0�g� � AZ1 � BZ2:

Here, F1�g�;F2�g� de®ne the form factors of atoms belonging

to the ®rst and second groups, respectively. The real values A

and B are the structure factors of the cell, depending on the

atom coordinates of the corresponding groups:

A �P exp igR
�1�
j ; B �P exp igR

�2�
j :

Because of the cell's symmetry, both functions S0�g� and S�g�
are real and their relative phase can only take values 0 or �.

The relative phase can be non-zero only when the parameters

A and B are of opposite sign and satisfy the following

inequalities:

Z1

Z2

<
B

A

���� ����< F1

F2

:

The Thomas±Fermi representation of the atom form factor is

used below:

F�g� � Z'�gZÿ1=3�;
where '�x� is a universal monotonically decreasing function

normalized with the condition '�0� � 1.

Then, for every Z1 >Z2, the volume of reciprocal-lattice

space where structure amplitudes S0�g� and S�g� are of

opposite sign, is not equal to zero and is determined by the

inequalities

Z1

Z2

<
B

A

���� ����< Z1

Z2

'�gZ
ÿ1=3
1 �

'�gZ
ÿ1=3
2 � :

For the Bragg re¯ections, which belong to the selected area in

reciprocal-lattice space, the method presented in this paper

allows one to de®ne the signs of structure amplitudes for

centrosymmetric crystals and thus to supplement information

delivered by other phase-sensitive methods.

One more possibility that could enhance the capabilities of

this method should be mentioned. One can choose the energy

of the generated X-radiation in a way that it falls on the

anomalous dispersion of one of the cell's atoms. In this

situation, the theoretical description should take into account

anomalous dispersion and absorption corrections for the

amplitude of the electron beam scattering by the atomic

electrons. Using the method described by Feranchuk &

Ivashin (1989), we derived an expression for CXR intensity for

this case (not presented here) and have carried out a quali-

tative comparison of theoretical predictions with the experi-

mental results from Reese et al. (1984). The theory ®ts fairly

well with the general behavior of the experimental curves.

However, to obtain quantitative results, this technique

requires a high-precision measurements of radiated intensity,

which is hampered by the intense background of incoherent

Bremsstrahlung (Feranchuk et al., 2000) and therefore needs

further technical improvements of the experimental set-up.

Finally, the experimental conditions (Shen et al., 2000a,b)

providing the phase-sensitive effects in X-ray diffraction are

also of great interest in the analysis of CXR spectra.

5. Conclusions

We have shown theoretically that the CXR spectra from

nonrelativistic electrons passing through the crystal depend on

the relative phases of structure amplitudes within the de®nite

range of the reciprocal-lattice vectors. Analysis of these

spectra permits one to supplement the information obtained

from another phase-sensitive method and to build two addi-

tional Patterson functions, which simplify the problem of

reconstruction of the charge-density distribution within the

unit cell of the investigated crystal. The advantages of the

proposed method and qualitative features of the Patterson

functions are illustrated by the numerical examples.

The authors wish to thank Dr R. Eisenhower of Bruker

AXS for comments on the manuscript.
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